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a  b  s  t  r  a  c  t

The  crystal  structure  and  magnetic  properties  for  the ordered  double  perovskite  oxides  Sr2−xKxFeMoO6

(0  ≤  x  ≤ 0.04)  are  investigated.  X-ray  powder  diffraction  studies  reveal  that  all the samples  are  single  phase
and have  the I4/m  symmetry.  The  anti-site  defect  (AS)  in  double  perovskite  oxides  of Sr2−xKxFeMoO6 may
be  adjusted  by alkali  metal  element  of K doping.  The  unit  cell  magnetization  at  280  K  is  1.12  �B for  x  = 0
and  1.26  �B for  x = 0.04, respectively.  The  cation-ordering  and  the  Fe  O(1)  Mo  bond-angle  play the
eywords:
-ray diffraction
rystal structure
acancy formation
agnetic measurements

competition  roles  on  the  magnetism  in the  doping  system.
© 2012 Elsevier B.V. All rights reserved.
agnetoresistance

. Introduction

Functional materials have attracted great attention in recent
ears due to their promising applications in wide range of device
1–5]. The double perovskite-like compound Sr2FeMoO6 (SFMO),
ith a remarkable magnetoresistance (MR) above the room tem-
erature, has become one of the most promising candidates in
agnetic storage materials [6].  SFMO is a typical ordered double

erovskite structure A2BB′O6, where A is the alkaline-earth ion, B
nd B′ are the transition metals. As reported in [7] and [8],  the crys-
al structure of SFMO is cubic or tetragonal, where the alternating
eO6 and MoO6 octahedral are arranged regularly (we call the reg-
lar arrangement as the cation-ordering) in a rock salt superlattice
ith the voluminous Sr cation occupying the voids among the octa-
edral. The existence of anti-site defects (Mo  on Fe site and vice
ersa, AS defect) has great influence on the magnetic and transport
roperties of Sr2FeMoO6 [9–11]. The cation-ordering is believed
o rely on the charge differences between Fe and Mo  ions [12].
he less the difference is, the more disorder between B and B′ is.

or device applications, enhancement in magnetism and capability
f manipulating electo-magnetic coupling become very desirable.
hemical doping is one of effective approaches to achieve these
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objectives. Therefore, a technical roadmap to enhance the mag-
netism by either intrinsic doping or external modulation becomes
attractive.

Changes of valence states in transition-metal oxides often cause
significant changes in their structural and physical properties
[13,14]. Chemical doping is the conventional way of modulat-
ing these valence states. In ABO3 perovskite and/or A2BB′O6
perovskite-like oxides, chemical doping at the A site may intro-
duce vacancies or electrons at the B site, giving rise to exotic
physical properties like high transition temperature superconduc-
tivity and colossal magnetoresistance [15,16]. When two  transition
metals occupancy at different sites in the unit cell, they may
transfer charges due to the doping. The substitution of triva-
lent La ions for the divalent Sr ions induces electron doping and
these doping electrons inject into Mo  orbit [17]. Our previous
work also has demonstrated that the doping electrons reduce
the valence state of Mo  [18]. We report in the present on the
study of the substitution of univalent potassium (K) for the diva-
lent Sr ions in SFMO and its effects on crystal structure, valence
of Fe, and resulted magnetic properties. We  demonstrate that
the K-doping can modulate the magnetic property, an unusual
effect.

2. Experimental
Samples of Sr2−xKxFeMoO6 (x = 0, 0.01, 0.02, 0.03, 0.04) are prepared by stan-
dard  solid-state reaction. Details are given in our previous paper [19]. Briefly,
stoichiometric powders of SrCO3, Fe2O3, MoO3 and K2CO3 are mixed, ground and
heated at 900 ◦C for 10 h in air. The pre-reacted mixture is then finely ground,
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ig. 1. (a) Measured XRD pattern for polycrystalline Sr2−xKxFeMoO6 (0 ≤ x ≤ 0.04).
b) The Rietveld refinement for sample x = 0.

ressed into pellets and sintered at 1280 ◦C in a stream of 5% H2/Ar gas for
5 h with several intermediate grindings. The samples are heated and cooled
t  a rate of 5 ◦C/min under the atmosphere above. Structure of the sample is
xamined by X-Ray Powder Diffraction (XRD) using a Rigaku D/max 2500 diffrac-
ometer with Cu K� radiation (50 kV 120 mA)  and a graphite monochromator.

 step scan mode is employed with a step width of 2� = 0.02◦ and a sampling
ime of 2 s. The XRD patterns show that the samples crystallize in single phase.
he XRD data is analyzed by means of the Rietveld refinement program GSAS
20].  Oxygen content in the formula is determined by the double iodometric
itration, which is developed in our previous in the oxygen content determina-
ion in high-TC superconductors [21,22]. The M–H  curves of these samples are

easured by a vibrating sample magnetometer (VSM). The magnetoresistance prop-
rties are measured using a standard four-probe technique with a magnetic field
pplied.

. Results and discussion

Fig. 1(a) presents the laboratory measured �–2� XRD patterns for
he samples with x = 0–0.04. The XRD results show that all samples
rystallize in single phase with the symmetry of I4/m. In order to
dentify details of the structural distortion, we perform the Rietveld
efinements using the XRD data collected at laboratory. The atoms
ccupy at: Sr/K, 4d (1/2, 0, 1/4); Fe/Mo, 2a (0, 0, 0), (denote as B-site);
o/Fe, 2b (0, 0, 1/2), (denote as B′-site); O1, 8 h (x, y, 0); O2, 4e (0, 0,

). Before refinements, we assume full occupancy for each site in the
nit. During refinements, the real occupancy maybe change accord-
ng to the difference between the measured XRD patter and the
alculated one. The weak scattering of oxygen on X-ray may  result
n the insensitive to the XRD intensity, thus oxygen occupancies
re assumed to the values determined from the double iodometric
Fig. 2. (a) Tetragonal distortion of a/c (left) and the tolerance factor of t (right) versus
the doping content x. (b) The bond length of Fe O and Mo O (left) as a function of
x,  the angle of Fe O(1) Mo (right) as a function of x.

titration measurement. The values for all samples are nearly 6 due
to the oxygen is rich throughout the preparation (x ≤ 0.04), where
the reaction is:

(8 − 4x)SrCO3 + 2Fe2O3 + 4MoO3 + 2xK2CO3 → 4Sr2−xKxFeMoO6

+ (8 − 2x)CO2↑ + (1 − x)O2↑
The refinement is performed according to the group order as

reported in references [23,24]. As an example, the refinement
details are shown in Fig. 1(b) for x = 0. Refinement processes are
smooth and the difference between the measured pattern and the
calculated one is very small. The refinement reliability is ensured
by the refinement parameter Rwp = 5.68%, with lattice parameters
a = b = 5.5798(9) Å, and c = 7.8645(1) Å. Rwp is in the range of 5–6%
for all samples. The substitution of K1+ for Sr2+ ions induces the crys-
tal lattice distortion although the crystal structure of all samples
remains the tetragonal. The crystal lattice distortion, bond length,
and bond-angle of Fe O Mo  may  be crucial for understanding the
change in magnetic property in SFMO.

We obtain structure parameters from Rietveld refinements, and
calculate the tetragonal distortion of a/c, as shown in Fig. 2 (a)
left. a, c, and v, increase monotonously with increasing x, which
can be interpreted by larger ion radius of K1+ substitution for
Sr2+. The values of a/c also increase monotonously with increas-
ing x. The change of a/c leads us to recall of the tolerance factor
t, defined as t = rA+rO√

2(rB+rO)
, with rA, rB, and rO are the ionic radii

of A, B, and oxygen, respectively. The tolerance factor is a semi-
quantitative estimation for the difference of the symmetry of an
ABO3 perovskite-like unit cell from the cubic one. A large deviation

of t from 1 suggests that the perovskite structure may be unstable
[25]. The tolerance factor concept can be adapted to double per-
ovskites as well. In general, for double perovskites, with the mixed A
site A(2−x)A

′
xBB′O6, we  may  define the tolerance factor in this system
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zation in the system. The Fe O(1) Mo  bond-angle increases with
Fig. 3. The Fe/Mo order as a function of x.

s t = 1−(x/2)rA+(x/2)rA′ +rO√
2((rB/2)+(rB′ /2)+rO)

, where rA, rA′ , rB,rB′ are the ionic radii of

he respective ions. The ionic sizes for Sr2+, K1+, Fe3+, Mo5+ and O2−

re 1.44 Å (coordination number, denote as CN, XII), 1.64 Å (CN, XII),
.645 Å (CN, VI), 0.61Å(CN, VI), and 1.38Å(CN, IV), respectively [26].
he calculated dependence of t on x for Sr(2−x)KxFeMoO6 is shown
n Fig. 2(a) right. That the values of t and a/c increase monotonously

ith increasing x suggests that larger K1+ substitution of Sr2+ leads
o enhancement of tetragonal symmetry. This coincides with refer-
nce [27] which indicates that symmetry will become up because
f larger ion substitution in A-site.

Fig. 2 (b) shows bond lengths (left) and bond angles (right) vary
ith the concentration of K for Sr2−xKxFeMoO6, which are obtained

rom Rietveld refinements using the XRD data above. The averaged
e O bond-length decreases with increasing K doping, which may
ndicate Fe supply more electrons to O in forming Fe O bond. The
veraged Mo  O bond-length remains almost unchanged after K
oping. The variation in averaged bond-lengths of Fe O and Mo  O
eems confirming that: Fe may  increase the valence state after K
oping and Mo  remain that unchanged. The angle of Fe O(1) Mo
s a function of x is shown in Fig. 2(b) right. The double exchange
nd the super exchange are two different mechanisms for the mag-
etic relation between Fe and Mo  ions. According to [18], the super
xchange may  be not suited to describe magnetic relation in SFMO
nd the double exchange may  be the main explanations. The double
xchange relates to the bond angle [8],  which has a good exchange
ith the bond angle approaching 180◦. The angle increases with

ncreasing x suggests that the double exchange maybe enhance,
hich is one of important reasons for magnetic property in

FMO.
The occupancy of Fe at B-site and that of Mo  at B′-site have

een determined from Rietveld refinements. We  define the cation-
rdering � as � = 1 − 2AS, where AS is the occupancy of Fe at B′-site
r Mo  at B-site, which so called anti-site occupancy. The value
f � decreases from 94.2(8)% for sample x = 0–66.1(2) % for sam-
le x = 0.04, as shown in Fig. 3. The cation-ordering relates to the
ifference of the chemical valence between Fe and Mo  ions [12].
he chemical valence of Fe and Mo  may  respectively be Fe2+� and
o6−�, with � = ±1. The substitution of K1+ for Sr2+ ions may  induce

he decrease of the chemical valence at A-site, which may  be com-
ensated by the increase of the chemical valence at B/B′-sites, i.e.,
he decrease of the chemical valence at Sr2+/K1+ site results in the
ariation of the chemical valence of Fe or Mo.  If the chemical valence
f element Mo  set as 6 − ı, the increase of chemical valence at B or

′-sites may  result from the enhancement of Fe. The deduction is
onfirmed by the variation of the averaged bond-length of Fe O
Fig. 4. (a) Magnetization curves of Sr2−xKxFeMoO6 (0 ≤ x ≤ 0.04) at 280 K; (b) The
dependence of unit cell magnetic moment on doping content x at 280 K.

and Mo  O. The less the valence difference is, the more disorder
between Fe and Mo  is.

Within the framework of the simplest ferromagnetic-
arrangement model (the FIM model) and assuming a spin-only
contribution, the moments of the Fe3+ and the Mo5+ sublattices
are 5 �B/unit cell and 1 �B/unit cell, respectively, for a perfectly
cation-ordering SFMO. The moments between the Fe3+ and the
Mo5+ sublattices couple in antiferromagnetic, resulting in a satu-
ration magnetization (MS) of 4 �B/unit cell. However, Mössbauer
spectroscopy studies have proved that a valence mixing of Fe and
Mo appears in SFMO, i.e., the configurations of Fe2+–Mo6+ and
Fe3+–Mo5+ [28]. The valence mixing configurations of Fe and Mo
remains the MS of 4 �B/unit-cell, which still fits the FIM model. The
magnetization dependence on the applied magnetic field for each
sample at 280 K is shown in Fig. 4(a). Based on the magnetization
curves, we  calculate the unit cell magnetization at 280 K, as shown
in Fig. 4 (b). The magnetization is in the range of 1.12–1.26 �B/unit-
cell at 280 K for all samples, which is much smaller than that at
5 K. We  explain the magnetization decrease at high temperature
is: (1) Thermal energy induces the spin-flip of partial Fe-ion, and
disturbs the ferromagnetic-ordering among Fe-ions and Mo-ions.
(2) Spin-orbit coupling interaction may  play some roles on the
magnetization in the system. The unit cell magnetization increases
with increasing x when x ≤ 0.03, but decreases with increasing x
when x ≥ 0.03, as shown in Fig. 4(b). The Fe O(1) Mo  bond-angle,
the AS defect may  have the competitive effects on the magneti-
increasing x, as studied by XRD and shown in Fig. 2(b), enhances
the double exchange between Fe and Mo.  The double exchange
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Fig. 5. (a) Field dependence of resistivity of Sr2−xKxFeMoO6 (0 ≤ x ≤ 0.04) at 280 K;
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b)  Field dependence of magnetoresistance of the series at 280 K. Inset in (b) shows
he resistivity at 280 K under zero field as a function of x.

nteractions between Fe and Mo  may  play the main roles on the
agnetization with x ≤ 0.03. On the other hand, AS defects may

estroy the ferromagnetic-ordering in SFMO compounds [29]. The
ntiferromagnetic configuration of Fe O Fe may  increase with
ncreasing the concentration of AS defects, which cripples the
ffect of the Fe-moment on the magnetization in the unit cell. The
ation-ordering decreases from 94.2(8)% for sample x = 0–66.1(2)%
or sample x = 0.04 (as shown in Fig. 3) and the AS defect increases
rom 2.8(6)% for sample x = 0 to 16.9(4)% for sample x = 0.04. AS
efect possibly plays the main role on the magnetization in the
ample with x = 0.04.

One of the most remarkable properties of polycrystalline SFMO
s its large MR,  which is usually explained by the intergrain spin-
ependent carrier scattering process [30]. This explanation is based
n the fact that the grain boundary resistance can be modulated by
n applied magnetic field. The magnetoresistance is here defined
o be: MR(T, H) = �(T,H)−�(T,0)

�(T,H) , where �(T, H) and �(T, 0) are the
esistivity under a field of H and a zero field at temperature T,
espectively. Fig. 5(a) shows field dependence of resistivity of
r2−xKxFeMoO6 (0 ≤x ≤ 0.04) at 280 K. Inset in Fig. 5(b) shows the
esistivity at 280 K as a function of x under zero magnetic field
pplied. According to Anderson and Hasegawa [31], transfer inte-
ral increases with increasing the bond-angle of Fe O(1) Mo.  We
ote in the right of Fig. 2(b) that the bond-angle of Fe O(1) Mo

ncreases with increasing x. Therefore, the increase of transfer inte-

ral may  result in the decrease in resistivity, as shown in the inset
f Fig. 5(b). The decrease of MR  for sample with x = 0.04 (see in
ig. 5(b)) may  explain as the increase of AS defect. The AS defect

[
[

[
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may  indicate the existence of antiferromagnetic configuration of
Fe O Fe patches in the system. The increase of AS defect concen-
tration may  extend the antiferromagnetic composition Fe O Fe
patches, which may  decrease the tunneling possibility for the
spin-polarized carriers crossing the grain boundary based on the
two-current model and leading to the lower MR  of the compounds.

Conclusions

In summary, we successfully incorporate K into ordered double
perovskite oxide Sr2FeMoO6. X-ray powder diffraction results show
that all the samples are single phase. The substitution of K1+ for
Sr2+ ions induces the lattice distortion although the unit cell sym-
metry of all samples remains I4/m. Symmetry becomes up because
of larger ion substitution of A site. The averaged bond length of
Fe O and Mo  O confirms that the increase of chemical valence at
B or B′ site may  be from the raise in chemical valence of Fe-ion.
The anti-site defect in double perovskite oxides of Sr2−xKxFeMoO6
may  be adjusted by alkali metal element of K doping. The unit cell
magnetization at 280 K is 1.12 �B for x = 0 and 1.26 �B for x = 0.04,
respectively. The cation-ordering, bond length, and bond-angle of
Fe O Mo  are crucial for understanding the change in magnetic
property in SFMO.
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